
Heaping of granular materials in a cylindrical vibrating bed

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 8241

(http://iopscience.iop.org/0305-4470/33/46/307)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/46
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 8241–8249. Printed in the UK PII: S0305-4470(00)14942-X

Heaping of granular materials in a cylindrical vibrating bed

Shiu Liu and Pik-Yin Lai†
Department of Physics and Centre for Complex Systems, National Central University, Chung-li,
Taiwan 320, Republic of China

E-mail: pylai@spl1.phy.ncu.edu.tw

Received 22 June 2000, in final form 13 September 2000

Abstract. We consider the heap formation of granular materials contained in a cylindrical
vertically vibrating bed under slight vibration. Using the surface profile of the heap as the dynamical
variable, the heap equation is generalized to the three-dimensional case. The steady state heap
profiles are calculated. Our results indicate a change of downward to upward heaps as the vibration
strength is increased, similar to those observed in two-dimensional vibrating bed experiments. The
effective current in this model is also calculated, which can describe the convection phenomena.
We also discuss the relationship between the heap formation times and the vibration strength and
system size.

1. Introduction

The fact of greatest interest in studying granular materials is that they cannot be easily classified
as solids, liquids or gases. Because of this unique characteristic, granular materials exhibit
many unusual behaviours in a vertical vibrating bed. Many special phenomena such as size
separation, pattern formation, avalanches, compaction and convection can be observed in
granular systems. Granular materials behave quite differently from any of the other familiar
forms of matter. For example, granular materials can sustain shears like solids with surface
slope smaller than the angle of repose and also flow like liquids with slope above the angle of
repose. However, as distinct from ordinary liquids, granular materials are stable as long as the
top surface is at a slope less than the angle of repose. Furthermore, under periodic external
excitations, granular materials can reach a steady state and can have different spatial patterns
under different situations [1–12].

From past experiments, granular systems have been shown to produce some special
patterns under periodic external excitations. For example, in the two-dimensional vibrating
bed, we could see that as the vibration increases, the granular systems will have heaping,
coherent, expansion, wave and arching formations [12]. Instead of investigating the granular
materials on a microscopic particle level, in this paper we try to describe the large-scale
structure of granular systems contained in a vibrating bed and analyse the steady structures
and dynamics of formation of these granular systems. In this paper, we consider granular
materials contained in a three-dimensional vibrating bed and the heap formation phenomena
under slight vibration.

The motion of granular particles contained in a vibrating bed undergoes inelastic collisions,
which causes the system energy to dissipate, but the vibrations will pump energy into the system
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Figure 1. Schematic pictures and convection patterns in a cylindrical vibrating bed. (a) Cylindrical
vibrating bed with origin at the centre of the base and radius R. (b) Initial flat layer of height H .
h(r, t) shows the height of pattern formation at position r and time t . (c) Downward heap and the
convection current profile. (d) Upward heap and the convection roll.

continuously. The physical origin for the instability giving rise to the heap structure can be
interpreted as follows: when too much energy is pumped into the system by vibration, the
system cannot dissipate fast enough by small-length-scale collisions and hence large-length-
scale convection (of the order of the container size) sets in at some point. The granular
convection has some heuristic similarity with the Rayleigh–Benard instability, so that energy
can be distributed and dissipated more efficiently.

Heap formation results from the convection as depicted schematically in figure 1. In this
paper, we generalize the theoretical approach of developing a phenomenological model [13–15]
to the three-dimensional vibrating bed. Using the height profile as the only dynamical variable
and taking into account the decrease in local density due to vibration and the nonlinear couplings
for energy dissipation, our model can reproduce the observed downward and upward heap
formations. This model has been shown to describe the heap formation of the two-dimensional
vibrating bed under small vibrations rather successfully; in this paper we extend our study to
the three-dimensional cylindrical vibrating bed.

2. Steady state heap profile

Following the two-dimensional heap equation [13–15], our model contains energy pumped
into the grains, which causes the layer to expand and the energy decrease from the collision of
the grains causes the profile to flatten. We consider a cylindrical symmetric three-dimensional
vibrating bed for simplicity. Let h(�r, t) denote the height of the grain profile at position �r and
time t . �r is the position vector on the base of the container and is a two-dimensional vector with
radial distance r and polar angle φ. The equation of motion has been proposed to be [13–15]

∂h

∂t
= D∇2h + �h − βh2 (1)
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where D is the diffusion constant, � is the coefficient of increasing height per unit time due to
vibrations and β is the coefficient of decreasing height due to the dissipation of energy in the
system. The centre of the circular base of the container is taken to be the origin (figure 1(a)).
We assume that the initial condition is a flat profile for convenience (figure 1(b)). Therefore
the initial condition is

h(�r, 0) = H = constant. (2)

Since the initial profile is symmetric, and the condition of the wall is assumed to be cylindrically
symmetric and will not change with time, h(�r, t) will remain symmetric at later times, i.e. h is
assumed to be independent of the polar angle φ. Therefore, one of the boundary conditions is

h(�r, t) = h(r, t). (3)

Furthermore, based on the observation that the total volume of the layer is conserved for heap
phenomena under small vibrations, another boundary condition is

∫ R

0
h(r, t)r dr =

∫ R

0
h(r, 0)r dr = R2H

2
(4)

where R is the radius of the container. The steady state profile for the simple linear case when
β = 0 can be solved exactly. In this case, equation (1) becomes the linear diffusion type
equation

∂h

∂t
= D∇2h + �h. (5)

Then with the boundary conditions (3) and (4), the steady state solution is solved to be

hs(r) = kRHJ0(kr)

2J1(kR)
(6)

where k2 ≡ �
D

, and J0, J1 are the Bessel functions. This solution is physically valid for small
enough vibration k < x01

R
, where x01 � 2.0405 is the first root of J0; otherwise hs would

be negative in some region of r . The dynamics for the nonlinear β �= 0 case can be solved
numerically and the results are presented in the next section. The structure of steady heaps
produced from equation (1) is given by ∂h/∂t = 0 and the heaping equation becomes

∇2hs + k2hs − β ′h2
s = 0 (7)

where β ′ ≡ β

D
. With the cylindrical symmetric boundary condition (3), equation (7) reduces

to

d2hs

dr2
+

1

r

dhs

dr
+ k2hs − β ′hs = 0. (8)

Since all physical quantities must behave well near r = 0, one must have the condition
dhs (0)/dr = 0. Equation (8) can be solved numerically with the boundary conditions (4) and
dhs (0)/dr = 0. As the vibration becomes stronger, the nonlinearity becomes more important.
Thus β ′ should increase with k. From dimensional analysis, β ′ must be of the formµk3, where
µ is a dimensionless parameter controlling the strength of the leading nonlinear effect.

The numerical result of hs is shown in figure 2, where the aspect ratio is defined as
χ = H/(2R). The steady state heap changes from downward (mountain) modes to upward
(valley) modes as k increases. A similar behaviour has been observed in both experiments [10]
and theory [13–15] in two-dimensional vibrating beds.
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Figure 2. The steady state heap profile for different vibrating strengths kR with the same χ = 0.5
and µ = 1.

3. Current and dynamics of heap formation

The formation dynamics of the heap is obtained by numerically solving equation (1) with initial
condition (2) and boundary conditions (3) and (4). It can be easily verified from equation (1)
that, if t is in units of �−1, there are only three independent parameters in our model, namely
k, µ and the aspect ratio of the initial layer, χ ≡ H

2R . Figure 3 shows the time evolution of
the profile at a given vibrational strength. The steady state heap is downward (mountain-like)
for smaller value of kR and becomes an upward (valley-like) heap at higher values of kR. It
should be noted that in general the formation time is longer for stronger kR.

The conservation law given in equation (4) is equivalent to the existence of an effective
current formally defined as

�j(�r, t) ≡ −D∇h − �

∫ �r
h(�r ′, t) d�r ′ + β

∫ �r
h2(�r ′, t) d�r ′ (9)

and the heap equation (1) can be written as the continuity equation

∂h

∂t
+ ∇ · �j = 0. (10)

Because of the boundary condition of radial symmetry in h in equation (3), �j = jr(r, t)r̂ has
only the radial component and is a function of r . The current is an odd function of r since h
is even in r; furthermore, the current is equal to zero on the boundary. The first term of the
current in equation (9) is the usual local gradient term, which depends only on the profile on the
surface; the second and third terms depend on the bulk height of the heap. Thus the first term
is related to the surface flow, while the second and third terms are dominated by the bulk flow
under the surface profile. The increase in height due to vibration tries to expand the volume of
the layer, but the constant volume conservation forbids such a change and the current sets in
to rearrange the profile to meet the conservation law in equation (4). This current jr(r, t) can
be identified as an effective current associated with the real convection current. The current
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Figure 3. Time evolution of the profiles with initial flat profile with χ = 0.5, µ = 1. (a) k = 0.6
(b) k = 2.4.

at any time t , given by equation (9), can be computed numerically. Figure 4 displays the
time evolution of the current distribution. The steady profile is a downward heap for smaller
kR (figures 3(a) and 4(a)); the current flows towards the centre of the system. The current
eventually goes to zero in the long-time limit. From equation (9), the current is composed
of a surface current (first term in (9)) and a bulk current (second and third terms in (9)). For
the downward heap case, since the surface current is positive, but the total current j (r, t) is
negative (see figure 4(a)), the bulk current must be negative deep inside the layer. Hence a
convection flow pattern under the heap profile can be depicted as shown in figure 1(c). For
larger values of kR, the steady heap is an upward mode; a similar argument (see figures 3(b)
and 4(b)) would lead to the schematic flow pattern in figure 1(d). Although our model cannot
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Figure 4. Time evolution of the current distributions, in units of �R2, with initial flat profile and
χ = 0.5, µ = 1: (a) k = 0.6; (b) k = 2.4.

directly calculate the detailed flow pattern inside the heaps, it does lead to a picture of the
convection pattern as observed in experiments.

4. Heap formation times

We define the relaxation function δ(t) as the normalized root-mean-square deviation from the
steady state profile to describe the relaxation towards the steady state as

[δ(t)]2 =
∫ R

0 r dr [h(r, t) − hs(r)]2

∫ R

0 r dr [h(r, 0) − hs(r)]2
. (11)

Obviously, δ(0) = 1 and δ(∞) = 0. δ(t) obtained from the numerical solution of h(r, t)
for various vibrational strengths are calculated explicitly. In contrast to the results in two
dimensions [14, 15], δ(t) deviates appreciably from a simple exponential decay, but can be
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Figure 5. The heap formation times τ , in units of �−1, as a function of the vibrating strength
kR for (a) different values of µ but the same χ = 0.5 and (b) different values of χ but the same
µ = 0.5.

fitted well by a stretched exponential function. By fitting to a stretched exponential form for t
in units of �−1, δ(t) = exp(−( t

τ̃
)α), the characteristic formation time for the steady heap can

be obtained. τ̃ and α are fitting constants. In most cases, we find α ≈ 0.94, and τ̃ increases
with kR for all µ and χ . The formation times is calculated as τ ≡ ∫ ∞

0 δ(t) dt = τ̃
α
�( 1

α
). τ

(also in units of �−1), as a function of the vibration strength kR, are shown in figure 5(a) for
different values of µ. The formation time of the steady heap is longer for stronger vibration,
which agrees with the general expectation that when more energy is pumped into the system,
stronger fluctuations will delay the system relaxing to its steady state. Also, the formation time
is shorter for a larger value of µ, which reflects the general behaviour of reaching the steady
state faster for stronger dissipation that damps the energy in a dissipative system.
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The formation time is also controlled by the aspect ratio χ = H/(2R) of the initial layer
as shown in figure 5(b). For a given value of kR, a system with a smaller aspect ratio is faster
in approaching the steady heap. For a system with the same R, a thicker initial layer would
have a stronger dissipation relative to the input energy because the dissipative term ∼h2 while
the energy input term ∼h (see equation (1)). The larger dissipation in a thicker layer would
damp the system more effectively and form the steady heap faster.

5. Discussions

In the experimental studies [10] of heaping in two dimensions, it has been shown that two types
of heap can be formed, the upward (valley-like) and the downward (mountain-like) modes. The
main difference between these two modes is the convection current of the granular particles
next to the wall which move up in the upward mode and move down in the downward mode.
The relevant dimensionless parameter is � = Aω2

g
, where A, ω and g are the amplitude,

frequency of the vibrating bed and the gravitational acceleration respectively. It is observed
that as � increases, the upward mode is formed and then changed to the downward mode. An
originally flat layer will turn into a heap when � is greater than some threshold value �c � 1.2.
The granular particles in the vibrating bed are not simply moving up and down vertically,
but convection rolls with particles moving up along the wall and flows down the slope of the
surface. It should be noted that the heap equation (1) is aimed at modelling the condition
for heap formation, i.e. � > �c in experimental situations. For � < �c, the initial flat layer
remains stable. To incorporate this, the heap equation can be generalized to

∂h

∂t
= D∇2h + �(� − �c)f (h) (12)

where �(� − �c) is the Heaviside step function that takes the values of zero or unity for the
coefficient of increasing height due to vibrations � less or not less than the threshold value
�c. � > �c would correspond to the condition of heap formation � > �c. For � < �c,
the flat layer (h(r, t) = constant) will be a stable solution. f (h) are some general effective
nonlinear couplings. When � � �c, the heap will disappear and the system becomes gas
like. This kind of system is characterized by how the granular flow interacts with the external
excitations rather than how energy is being dissipated among grain collisions. Our model
concerns the small vibrations of a vibrating bed which have steady heap formation. Comparing
the results of our simulation with the experiments, the vibrating strength kR, as the reduced
acceleration amplitude�, is the most important parameter affecting the granular systems under
periodic external excitations. First, the formation pattern changed from downward heaps to
upward heaps as kR increased. Second, the heap formation time is a function of kR with the
controlled parameters µ and χ . Our model also introduced the surface and bulk currents to
represent the convection and build up the heaps, which agree with the phenomena observed
from the experiments. The downward convection generates the mountain-like heaps and the
upward convection produces the valley-like heaps. At even stronger vibrations, there are still
other interesting patterns such as coherence, expansion, wave and arching observed in the
two-dimensional vibrating bed and stripes, along with squares and hexagons in the three-
dimensional thin vibrating bed [11]. The theories of these interesting phenomena are yet to be
investigated.
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